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ABSTRACT

A linear Weingarten surface in Euclidean space R
3 is a surface whose

mean curvature H and Gaussian curvature K satisfy a relation of the form

aH + bK = c, where a, b, c ∈ R. Such a surface is said to be hyperbolic

when a2 + 4bc < 0. In this paper we study rotational linear Weingarten

surfaces of hyperbolic type giving a classification under suitable hypoth-

esis. As a consequence, we obtain a family of complete hyperbolic linear

Weingarten surfaces in R
3 that consists of surfaces with self-intersections

whose generating curves are periodic.

1. Introduction

A surface S in a 3-dimensional Euclidean space R
3 is called a Weingarten sur-

face if there is some relation between its two principal curvatures κ1 and κ2,

that is, if there is a smooth function W of two variables such that W (κ1, κ2) = 0.

In particular, if K and H denote the Gauss and the mean curvature of S, respec-

tively; the identity W (κ1, κ2) = 0 implies a relation U(K, H) = 0. Weingarten

introduced this kind of surfaces in the context of the problem of finding all

surfaces isometric to a given surface of revolution [14], [15]. In this paper we

study Weingarten surfaces that satisfy the simplest case for U , that is, that U

is of the linear type

a H + b K = c,
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where a, b, c ∈ R. We say that S is a linear Weingarten surface and we

abbreviate by LW-surface. First examples of LW-surfaces are the surfaces with

constant mean curvature (b = 0) and the surfaces with constant Gauss cur-

vature (a = 0). Although these two kinds of surfaces have been extensively

studied in the literature, the classification of LW-surfaces in the general case is

almost completely open today. Along the history, they have been of interest for

geometers, mainly when the surface is closed: [2], [3], [8], [9], [10], [11], [13].

The behavior of a LW-surface and its qualitative properties strongly depend

on the sign of the discriminant ∆ := a2 + 4bc. Such a surface is said to be

hyperbolic (resp., elliptic) when ∆ < 0 (resp., ∆ > 0). The relation ∆ = 0

characterizes the tubular surfaces. Examples of elliptic surfaces are the surfaces

with constant mean curvature and the surfaces with positive constant Gaussian

curvature. Since elliptic LW-surfaces have similar properties as these two kinds

of surfaces, they have been of interest for a number of authors. For example,

elliptic LW-surfaces satisfy a maximum principle and this enables the use of the

Alexandrov reflection technique in its study. See the recent bibliography [1],

[4], [7], [12].

The aim of this paper is the study of the LW-surfaces of hyperbolic type.

Examples of hyperbolic LW-surfaces are the surfaces with negative constant

Gaussian curvature (a = 0, bc < 0). One expects then to find in the hyperbolic

LW-surfaces properties similar to those of the surfaces with negative constant

Gaussian curvature. However, as we shall see, our family is more extensive

and richer even in the rotational case; for example, we will obtain rotational

hyperbolic LW-surfaces with positive Gaussian curvature (Theorem 3.2). Notice

that in a hyperbolic Weingarten surface, the condition ∆ < 0 implies that

umbilical points do not exist on the surface. As a2 + 4bc < 0, it follows that

c 6= 0. Without loss of generality, throughout this work we shall assume that

c = 1 and the linear Weingarten relation is now

(1) a H + b K = 1.

Among all hyperbolic LW-surfaces, the class of the surfaces of revolution are

particularly interesting because in such case, equation (1) leads to an ordinary

differential equation. Its study is then reduced to finding the profile curve that

defines the surface. In this paper, we classify rotational hyperbolic LW-surfaces

with suitable hypothesis on the profile curve. We summarize our classification

as follows (see Theorems 3.2, 4.1, 5.2 and 6.4):
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Let a and b be real numbers under the condition a2 + 4b < 0.

We consider the family of rotational linear Weingarten surfaces

satisfying aH + bK = 1 whose profile curve presents a point

whose tangent line is parallel to the axis of revolution. Then

this family of surface can be parametrized by one parameter z0,

namely, S(a, b; z0), with a, z0 > 0 and z0 6= −2b/a such that:

(i) if 0 < z0 < a/2, the surface is not complete and with posi-

tive Gaussian curvature; (ii) if z0 = a/2, the surface is a right

cylinder; (iii) if a/2 < z0 < −2b/a, the surface is not complete

and with negative Gaussian curvature; (iv) if z0 > −2b/a, the

surface is complete and periodic.

In Figure 1 we present a scheme of the classification of rotational hyperbolic

LW-surfaces realized in this paper. In order to get this classification, we shall

describe the symmetries and qualitative properties of these surfaces. Among the

rotational hyperbolic LW-surfaces obtained in the above result, a special class

of such surfaces is the family of surfaces S(a, b; z0) with z0 > −2b/a, which

have remarkable properties. For this reason, we separate and emphasize the

statement as follows (Corollary 6.6):

There exists a one-parameter family of rotational hyperbolic lin-

ear Weingarten surfaces that are complete and with self-inter-

sections in R
3. Moreover, the profile curves are periodic.

This contrasts with Hilbert’s theorem that there do not exist complete sur-

faces with constant negative Gaussian curvature immersed in R
3. See also [4]

for other examples.

This paper is organized as follows. Section 2 introduces notation and termi-

nology used throughout this paper. Sections 3 to 6 successively describe the

properties of rotational hyperbolic LW-surfaces according the value assigned to

the parameter z0. For each case depending on z0, we present pictures of the

profile curves. Finally, in Section 7, we study LW-surfaces whose profile curve

has no tangent lines parallel to the axis of revolution and thus, they are not

comprised in any of the previous sections.
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Figure 1. Classification of rotational hyperbolic LW-surfaces.

We fix the value of the constant a in equation (1) with a > 0.

The diagram represents the (b, z0)-plane with z0 = z0(b). If

z0 = −2b/a, do not exist LW-surfaces. When z0 6= −2b/a, we

have four families of LW-surfaces depending if z0 = a/2 or if z0

belongs to the intervals (0, a/2), (a/2,−2b/a) and (−2b/a,∞).

2. Preliminaries

Let R
3 be the three-dimensional space with usual coordinates (x, y, z). Let

α : I → R
3 be a planar curve in the (x, z)-plane with coordinate functions

α(s) = (x(s), 0, z(s)) and z(s) > 0. Assume that s is the arclength along

α. Consider θ = θ(s) the angle function that makes the velocity α′(s) at s

with the x-axis, that is, α′(s) = (cos θ(s), 0, sin θ(s)). The curvature of the

planar curve α is given by θ′. Let S be the surface of revolution obtained by

rotating α with respect to the x-axis, that is, S parametrizes as X(s, φ) =

(x(s), z(s) cos φ, z(s) sin φ). The principal curvatures of S are given by

κ1(s, φ) = cos θ(s)/z(s), κ2(s, φ) = −θ′(s),

and the mean curvature and the Gaussian curvature of S write, respectively, as

(2) H(s, φ) =
cos θ(s) − z(s)θ′(s)

2z(s)
, K(s, φ) = −cos θ(s)θ′(s)

z(s)
.

The Weingarten relation (1) converts into

(3) a
cos θ(s) − z(s)θ′(s)

2z(s)
− b

cos θ(s)θ′(s)

z(s)
= 1.
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Moreover, throughout this work, we disregard the fact that the surface has

negative constant Gaussian curvature. Thus, we assume a 6= 0.

The study of rotational hyperbolic LW-surfaces reduces to the knowledge of

the solutions of equation (3) for given initial data. Assume that at s = 0 the

tangent line to α is parallel to the axis of revolution. Thus α(0) = (0, 0, z0),

z0 > 0 and α′(0) = (1, 0, 0). Then the curve α is governed by the system of

differential equations

(4)















x′(s) = cos θ(s)

z′(s) = sin θ(s)

θ′(s) = a cos θ(s)−2z(s)
az(s)+2b cos θ(s)

with initial conditions

(5) x(0) = 0, z(0) = z0, θ(0) = 0.

If necessary, we shall denote by α(s; z0) the solution obtained in (4)–(5) to

emphasize the dependence on the parameter z0. We have assumed that z(s) > 0

in the parametrization of α. However, if we replace the generating curve α by

ᾱ(s) = (x(s), 0,−z(s)), the surface obtained by rotating the new curve ᾱ with

respect to the x-axis is the same that the α one, but now the curve ᾱ is the

solution of (4)–(5) changing the parameters (a, b, z0) by (−a, b,−z0). Hence, we

can choose the parameters a and z0 to have the same sign. For convenience, we

shall assume that both a and z0 are positive numbers.

Theorem 2.1: A first integral of the differential equations system (4)–(5) is

given by

(6) z(s)2 − az(s) cos θ(s) − b cos2 θ(s) − (z2
0 − az0 − b) = 0.

Proof. Multiplying both sides of (3) by sin θ, we obtain a first integral of type

z(s)2 − az(s) cos θ(s) + b sin2 θ(s) + λ = 0

for some λ ∈ R. At s = 0, we conclude λ = az0 − z2
0 .

We will also write (6) in the form

(7) z(s)2 − az(s) cos θ(s) + b sin2 θ(s) + az0 − z2
0 = 0.

We show that our solutions have symmetries at the critical points of the

function z.
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Theorem 2.2 (Symmetry): Let α(s) = (x(s), 0, z(s)) be the profile curve of a

rotational hyperbolic LW-surface S where α is a solution of ((4)). If for some

s1 ∈ R, sin θ(s1) = 0, then α is symmetric with respect to the line x = x(s1).

Proof. By hypothesis, z′(s1) = 0. Without loss of generality, we assume that

x(s1) = 0. Then it suffices to show

x(s1 − s) = −x(s + s1)

z(s1 − s) = z(s + s1)

θ(s1 − s) = −θ(s + s1)

But each pair of the three functions is a solution of the same differential equa-

tions system for the same initial conditions. The uniqueness of solutions finishes

the proof.

We end this section by describing the phase portrait of the system of dif-

ferential equations (4), which allows an understanding of the evolution of this

system. Due to the periodicity of the cosine and sine functions, it suffices to

study the system (4) for θ ∈ [0, 2π]. We project the vector field (4) into the

(θ, z)-plane, that is,

θ′(s) =
a cos θ(s) − 2z(s)

az(s) + 2b cos θ(s)

z′(s) = sin θ(s)

In the region [0, 2π]×{(θ, z) : z > 0}, the vector field has exactly two singular-

ities at the points (0, a/2) and (2π, a/2) and there is a curve where the vector

field (θ′, z′) is not defined, namely,

{(θ, z = (−2b/a) cos θ) : 0 < θ < π/2, 3π/2 < θ < 2π}.

Both singularities are saddle points because the two eigenvalues of the lineariza-

tion at the singularities have opposite signs. Exactly, the two eigenvalues are

±2/
√
−∆, the singularities are of hyperbolic type and the eigenvectors of the

linearized system are orthogonal. A sketch of the phase portrait of the system

(4) appears in Figure 2.

Among the qualitative properties that we deduce from the phase portrait, we

have the following ones depending on the range of the initial value z0 in (5):
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Figure 2. The phase portrait of the system of differential equa-

tions (4).

1. If 0 < z0 < /2, the generating curve α is defined in some bounded interval.

Since the derivatives are bounded, the function z vanishes at the end points

of the interval.

2. If z0 = a/2, we have a stationary solution, that is, α is a straight-line.

3. If a/2 < z0 < −2b/a, the solution exploits when z approaches −2b/a cosθ.

This means that the maximal domain of the solution is some bounded inter-

val.

4. If z0 > −2b/a, it follows that the curve α is periodic.

According to this classification and depending if both numerator and denom-

inator of θ′ in (4) vanish, we distinguish between four cases depending on the

initial value of z0, namely, (i) 0 < z0 < a/2; (ii) z0 = a/2; (iii) a/2 < z0 < −2b/a

and (iv) z0 > −2b/a. We point out that if z0 = −2b/a, there are no solutions

for (4)–(5).

3. The case 0 < z0 < a/2

In this section we discuss the first case of the value z0 in (5): we assume,

(8) 0 < z0 < a/2.

Let (x, z, θ) the solution of (4)–(5). First, we study the qualitative properties

of the curve α(s), specially about its curvature θ′, and next we shall summarize

the obtained results.
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The function z = z(s) satisfies z(0) = z0 and z′(0) = 0. Since z0 < a/2 <

−2b/a, θ′(0) < 0. Then z′′(0) < 0. It follows that z′ and z′′ are negative for

s > 0 near 0.

Claim 1: The function z satisfies z′(s) < 0, for any s > 0.

By contradiction, we assume that s1 > s0 is the first point where z′(s1) = 0.

In particular, z′′(s1) ≥ 0. The function θ′ is negative in the interval [0, s1].

The proof is as follows. At s = 0, θ′(0) < 0. Suppose that s̄ is the first zero

of θ′, 0 < s̄ ≤ s1. Define the function f(z0) := z2
0 − az0 − b. Using the fact

that ∆ < 0, one can show that f is always positive with a unique minimum at

z0 = a/2. Then (6) implies that

a2 + 4b

a2
z(s̄)2 = −f(z0) < f(a/2) =

a2 + 4b

4
.

It follows that z(s̄)2 > a2/4 > z2
0 , which it is a contradiction because z(s) is

decreasing in the interval [0, s1]. As a conclusion, θ′(s) < 0 in [0, s1].

We return with the function z′′. As z′(s1) = 0, then cos θ(s1) = ±1, but

z′′(s1) = θ′(s1) cos θ(s1) ≥ 0 implies that cos θ(s1) = −1. By using (7),

z(s1)
2 + az(s1) + az0 − z2

0 = 0,

which yields z(s1) = −z0 or z(s1) = −a + z0 < 0, contradiction. This shows

the Claim.

Once the Claim is proved, we show that θ′ 6= 0 for all s. If the numerator

of θ′ is zero for the first zero s = s2, then cos θ(s2) = 2z(s2)/a. We use (6) to

deduce that

a2 + 4b

a2
z(s2)

2 = −f(z0) < −f(a/2) =
a2 + 4b

4
.

Then z(s2)
2 > a2/4. But as z(s) is strictly decreasing, z(s2)

2 < z2
0 : this is

a contradiction to the fact that z0 < a/2. Therefore θ′ < 0, that is, θ is a

decreasing and negative function for s > 0.

We show that z′′ < 0 in all the domain. Assume that for some s > 0,

z′′(s) = 0. Since θ′ < 0, it follows that cos θ(s) = 0. As a cos θ(s) − 2z(s) > 0

for all s, we obtain a contradiction again.

We study the maximal domain of definition of the given solution (x, z, θ).

From the above reasoning, we have two possibilities: either z = 0 at some

point, that is, the curve α meets the x-axis, or the maximal interval [0, s1)

satisfies s1 < ∞ and lims→s1
θ′(s) := θ1 = −∞ with lims→s1

z(s1) := z1 > 0.
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We see that the last one is impossible. In such case, az1 + 2b cos θ1 = 0 and

using (6) we have,

(a2 + 4b)z2
1 − 4bf(z0) = 0 or z2

1 =
4bf(z0)

a2 + 4b
>

4bf(a/2)

a2 + 4b
= −b.

Since z(s) is a decreasing function on s, we deduce that

−b < z2
1 < z2

0 < a2/4,

which yields a contradiction. As a conclusion, the function z(s) vanishes at a

first point s1: z(s1) = 0. We know that the curve α cannot be defined beyond

s = s1. Moreover, x′(s) 6= 0 for any s.

Theorem 3.1: Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a rotational

hyperbolic LW-surface S where α is the solution of (4)–(5). Assume that the

initial condition on z0 satisfies (8). Then

1. The curve α is a graph on some bounded interval (−x1, x1) of the x-axis. In

particular, α is embedded.

2. The curve α intersects the axis of rotation at x = ±x1.

3. The curve α is concave, with exactly one maximum.

Theorem 3.2: Let S be a rotational hyperbolic LW-surfaces whose profile

curve α satisfies the hypothesis of Theorem 3.1. Then S has the following

properties:

1. The surface is embedded.

2. The Gaussian curvature of S is positive.

3. The surface S can not to extend to be complete. Moreover, S has exactly

two singular points which coincide with the intersection of S with its axis of

rotation.

Proof. We only point out that K is positive; because in the expression (2) for

the Gauss curvature K, cos θ > 0 and θ′ < 0.

In Figure 3 (a), we show a picture of a profile curve α. The surfaces that

generate behave like the surfaces of revolution with positive constant Gauss

curvature. See [5], [6].
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4. The case z0 = a/2: cylinders

Theorem 4.1: Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a rotational

hyperbolic LW-surface S where α is the solution of (4)–(5). Assume that the

initial condition on z0 satisfies

(9) z0 = a/2.

Then α is a horizontal straight-line and S is a right cylinder.

Proof. It is immediate that x(s) = s, z(s) = a/2 and θ(s) = 0 is the solution of

(4)–(5).

See Figure 3 (b).
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Figure 3. Two profile curves corresponding to rotational hy-

perbolic LW-surfaces. We assume that a = −b = 2 in (1). (a)

Case z0 = 0.5. The maximal domain of the solution is approxi-

mately (−1.69, 1.69). The curve is concave with one maximum;

(b) Case z0 = 1. The solution is a horizontal straight-line and

the surface that generates is a right-cylinder.

5. The case a/2 < z0 < −2b/a

We study the properties of the solutions of (4)–(5) when the initial condition

z0 satisfies

(10) a/2 < z0 < −2b/a.

Under this hypothesis, the value of θ′ at s = 0 in the expression (4) is positive.

Since θ′(0) > 0, the function z is strictly increasing at s = 0. We prove that
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z′(s) > 0 for any s > 0. On the contrary, if s1 is the first point where z′(s1) = 0,

we have z′′(s1) ≤ 0 and z(s) is strictly increasing in [0, s1). The numerator of θ′

in (4) does not vanish in the interval [0, s1] because in such case, if a cos θ(s̄) −
2z(s̄) = 0 for some s̄, 0 < s̄ ≤ s1, then z(s̄) ≤ a/2, a contradiction since

z0 < z(s̄). On the other hand, in the interval [0, s1], the function cos θ(s) does

not vanish in [0, s1]: if cos θ(s) = 0 for some s, then θ′(s) = −a/2 < 0. As a

conclusion, z′′(s1) = θ′(s1) cos θ(s1) > 0, a contradiction.

With the same reasoning, one shows that the functions z′ and z′′ are positive

in its maximal domain [0, s1). We prove that s1 must be finite. The proof is by

contradiction. Assume s1 = ∞. Then

(11) lim
s→∞

z(s) = ∞.

For s = 0, the value of the denominator of θ′ in (4) is az0 + 2b, which it is

negative. However, using (11), az(s) + 2b cos θ(s) → ∞ as s → ∞. This means

that the denominator of θ′ in (4) must vanish at some point, a contradiction.

Theorem 5.1: Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a rotational

hyperbolic LW-surface S where α is the solution of (4)–(5). Assume that the

initial condition on z0 satisfies (10). Then

1. The curve α is a graph on some bounded interval (−x1, x1) of the x-axis. In

particular, α is embedded.

2. The curve α is convex, with exactly one minimum.

In Figure 4 (a), we present the profile curve α of a surface corresponding to

the case studied in this section. As both cos θ(s) and θ′(s) are positive functions,

the expression of the Gaussian curvature K in (2) is negative.

Theorem 5.2: Let S be a rotational hyperbolic LW-surfaces whose profile

curve α satisfies the hypothesis of Theorem 5.1. Then S has the following

properties:

1. The surface S is embedded.

2. The Gaussian curvature of S is negative.

3. The surface S cannot be extended to be complete.



294 RAFAEL LÓPEZ Isr. J. Math.

-1.5 -1 -0.5 0.5 1 1.5

0.2

0.4

0.6

0.8

1

(a)

-2 -1 1 2

0.5

1

1.5

2

(b)

Figure 4. Two profile curves corresponding to rotational hy-

perbolic LW-surfaces. We assume that a = −b = 2 in (1). (a)

Case z0 = 1.5. The domain of the solution is approximately

(−0.372, 0.372). Here α is convex with one minimum; (b) Case

z0 = 3. The curve α is periodic with self-intersections.

6. The case z0 > −2b/a: complete and periodic surfaces

In this section, we study the initial value problem (4)–(5) under the assumption

(12) z0 > (−2b)/a.

From (6), we write the function z = z(s) as

(13) z(s) =
1

2

(

a cos θ(s) +
√

(a2 + 4b) cos2 θ(s) + 4(z2
0 − az0 − b)

)

.

Lemma 6.1: The maximal interval of the solution (x, z, θ) of (4)–(5) is R.

Proof. The result follows if we prove that the derivatives x′, z′ and θ′ are

bounded. In view of (4), it suffices to show it for θ′: we shall find negative

numbers m and M such that m ≤ θ′(s) ≤ M < 0 for all s. We remark that

θ′(0) < 0.

First, we show the existence of constants δ1 and η1 independent on s, with

η1 < 0 < δ1, such that

(14) az(s) + 2b cos θ(s) ≥ δ1 and a cos θ(s) − 2z(s) ≥ η1.

Once this is proved, it follows from (4) that

(15) θ′(s) ≥ η1/δ1 := m.
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Since the function f = f(z0) is strictly increasing on z0 for z0 > a/2, there

exists ε > 0 such that

z2
0 − az0 − b = f(−2b/a) + ε =

b(a2 + 4b)

a2
+ ε.

From (13),

z ≥ 1

2

(

a cos θ +

√

(a2 + 4b) cos2 θ +
4b

a2
(a2 + 4b) + 4ε

)

≥ 1

2

(

a cos θ − a2 + 4b

a
+ ε′

)

,

for a certain positive number ε′. By using the hyperbolicity condition ∆ < 0,

we have

az(s) + 2b cos θ(s) ≥ a2 + 4b

2
(cos θ(s) − 1) +

a

2
ε′ ≥ a

2
ε′ := δ1.

On the other hand, and using (13) again

a cos θ(s) − 2z(s) ≥ −
√

(a2 + 4b) cos2(s)θ + 4f(z0) ≥ −2
√

f(z0) := η1.

We now obtain the upper bound M for θ′. We prove that there exist δ2, η2,

with η2 < 0 < δ2 such that

(16) az(s) + 2b cos θ(s) ≤ δ2 and a cos θ(s) − 2z(s) ≤ η2.

Using (13),

az(s) + 2b cos θ(s) =
1

2

(

(a2 + 4b) cos θ(s) + a
√

(a2 + 4b) cos2 θ(s) + 4f(z0)
)

≤ a
√

f(z0) := δ2.

On the other hand,

a cos θ(s) − 2z(s) = −
√

(a2 + 4b) cos2 θ(s) + 4f(z0)

≤ −
√

(a2 + 4b) + 4f(−2b/a) := η2.

Hence, we deduce from (4) that

(17) θ′(s) ≤ η2/δ2 := M.

The inequalities (15) and (17) concludes the proof of the lemma.
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As a consequence of the proof of Lemma 6.1, the graphic of the function θ

lies between two tilted straight-lines. Since the derivative of θ is negative, θ(s)

is strictly decreasing with

lim
s→∞

θ(s) = −∞.

Put T > 0 the first number such that θ(T ) = −2π. We prove that α is a

periodic curve.

Lemma 6.2: Under the hypothesis of this section and with the above notation,

we have:

x(s + T ) = x(s) + x(T )

z(s + T ) = z(s)

θ(s + T ) = θ(s) − 2π

Proof. This is a consequence of the uniqueness of solutions of (4)–(5). We only

have to show that z(T ) = z0. But this direct from (13), the assumption (12)

and that a/2 < −2b/a.

As conclusion of Lemmas 6.1 and 6.2, we describe the behavior of the coor-

dinates functions of the profile curve α under the assumption (12). See Figure

4 (b). Due to the monotonicity of θ, let T1, T2 and T3 be the points in the

period [0, T ] such that the function θ takes the values −π/2,−π and −3π/2,

respectively. In view of the variation of the angle θ with the time coordinate s,

it is easy to verify the following Table:

s θ x(s) z(s)

[0, T1] [0, −π

2 ] increasing decreasing

[T1, T2] [−π

2 ,−π] decreasing decreasing

[T2, T3] [−π, −3π

2 ] decreasing increasing

[T3, T ] [−3π

2 ,−2π] increasing increasing

Theorem 6.3: Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a rotational

hyperbolic LW-surface S where α is the solution of (4)–(5). Assume that the

initial condition on z0 satisfies (12). Then

1. The curve α is invariant by the group of translations in the x-direction given

by the vector (x(T ), 0, 0).
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2. In each period of z, the curve α presents one maximum at s = 0 and one

minimum at s = T2. Moreover, α is symmetric with respect to the vertical

line at x = 0 and x = x(T2).

3. The height function of α, that is, z = z(s), is periodic.

4. The curve α has self-intersections and its curvature has constant sign.

5. The part of α between the maximum and the minimum satisfies that the

function z(s) is strictly decreasing with exactly one vertical point. Between

this minimum and the next maximum, z = z(s) is strictly increasing with

exactly one vertical point.

6. The velocity α′ turns around the origin.

Theorem 6.4: Let S be a rotational hyperbolic LW-surfaces whose profile

curve α satisfies the hypothesis of Theorem 6.3. Then S has the following

properties:

1. The surface has self-intersections.

2. The surface is periodic with infinite vertical symmetries.

3. The surface is complete.

4. The part of α between two consecutive vertical points and containing a max-

imum corresponds with points of S with positive Gaussian curvature; on

the other hand, if this part contains a minimum, the Gaussian curvature is

negative in this set of the surface.

Corollary 6.5: Let α(s) = (x(s), 0, z(s)) be the profile curve of a rota-

tional hyperbolic LW-surface. Assume that α is the solution of (4)–(5) where

z0 > −2b/a. Then the graphic of α lies between the lines z = z0−a and z = z0,

that is,

z0 − a ≤ z(s) ≤ z0,

where z(s) reaches the minimum and the maximum values in a discrete set of

points.

Proof. Since θ → −∞, the minimum and the maximum of the function z(s)

reach at those points with cos θ = −1 and cos θ = 1, respectively. The estimate

is obtained from (13).

As it was announced in the Introduction and with the purpose to distinguish

with the surfaces of negative constant Gaussian curvature, we stand out from

Theorem 6.4 the following
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Corollary 6.6: There exists a one-parameter family of rotational hyperbolic

linear Weingarten surfaces that are complete and with self-intersections in R
3.

Moreover, the generating curves of these surfaces are periodic.

7. A new family of LW -surfaces of hyperbolic type

In the previous sections, we have considered the initial condition θ(0) = 0 in

(5) on the starting angle of the profile curve α. This corresponds with the fact

that the tangent line to α at the initial point is parallel to the axis of revolution

of the surface that generates. However, this condition can be substituted for

another one, namely, θ(0) = θ0. This means that the new profile curve α could

not have points in all its maximal domain I whose tangent line is horizontal.

Following the notation of the paper, this is written as z′(s) 6= 0 for any s ∈ I.

This section is devoted to obtain examples of such surfaces.

We take θ0 = −π/2 as starting angle and so, we consider solutions

{x(s), z(s), θ(s)}

of the differential equations system (4) subject the conditions

(18) x(0) = 0, z(0) = z0, θ(0) = −π/2.

We have then (see Figure 5):

Theorem 7.1: Let α = α(s) = (x(s), 0, z(s)) be the profile curve of a rotational

hyperbolic LW-surface S where α is the solution of (4)–18.

1. If z0 <
√
−b, the curve α intersects transversally the x-axis. The maximal

interval of α is bounded.

2. If z0 =
√
−b, the curve α intersect tangentially the x-axis.

3. If z0 >
√
−b, the curve α does not intersect the x-axis. In this case, the

curve α is one of the solutions obtained in Theorem 6.4.

Proof. The integral (6) is now

(19) z(s)2 − az(s) cos θ(s) − b cos2 θ(s) − z2
0 = 0.

Thus, if z(s) = 0 at some point s, we have z2
0 = −b cos2 θ(s). This implies

z2
0 ≤ −b. As a consequence, if z0 >

√
−b, the curve α does not intersect the

x-axis.

At s = 0, we know that θ′(0) = −2/a and so, θ is strictly decreasing for a

certain interval [0, δ) of s = 0. In particular, −1 ≤ sin θ(s) < 0 for 0 ≤ s < δ
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and z is a decreasing function. We see that the numerator and denominator

of θ′ are negative and positive respectively for numbers s > 0 close to s = 0.

On the other hand, θ′ vanishes at the points that satisfy cos θ(s) = 2z(s)/a

and the denominator in those points with cos θ(s) = −az(s)/2b. As ∆ < 0,

we deduce that (−az(s))/2b < (2z(s))/a. We prove that whenever z(s) > 0

and sin θ(s) < 0, the function az(s) + 2b cos θ(s) is increasing. This is a direct

consequence of the computation of its derivative, namely,

(a2 + 4b) sin θ(s)

az(s) + 2b cos θ(s)
z(s) > 0.

Thus we bound as follows: az(s)+2b cos θ(s) ≥ az0. Since z is decreasing, then

a cos θ(s) − 2z(s) ≥ −a − 2z0. Therefore,

0 > θ′(s) ≥ −(a + 2z0)/az0 > −∞.

This means that we can continue the solution α(s) provided z(s) > 0 and

sin θ(s) < 0. Moreover, and since z is decreasing near s = 0 and using (19),

z(s) and θ(s) are decreasing functions, at least until that θ reaches the value

−π. We consider the three cases described in the statement of Theorem 7.1.

1. Case z0 <
√
−b. We have two possibilities. First, there exists s0 > 0 such

that z′(s0) = 0 (and so, θ(s0) = −π). From (19) and using z2
0 < −b, we have

z(s0) < 0: contradiction. Therefore, the only possibility is that z′(s) 6= 0 for

any s and z(s) is strictly decreasing. In particular, α is defined for any s and

lim
s→∞

z(s) = z1 ≥ 0, lim
s→∞

θ′(s) = 0.

But letting s → ∞ in the expression of θ′ in (4), we obtain

θ′(s) → − a + 2z1

az1 − 2b
6= 0.

This contradiction implies that z must meet the x-axis. Furthermore, this

intersection must be transversal by using (19) again.

2. Case z2
0 = −b. From (19), the function z takes the value 0 if and only if

cos θ(s) = ±1. As z(s) is decreasing in a certain interval on the right of

s = 0, θ is decreasing. Thus, if z(s) > 0, we have then that either z′(s0) = 0

at some point s0, which implies by using (19) that z(s0) = 0 and θ(s0) = −π

or the solution α is defined for any s > 0 and z(s) is a decreasing function.

In such case, both z and θ are asymptotic to horizontal lines and

lim
s→∞

z(s) = z1 ≥ 0, lim
s→∞

θ′(s) = 0.
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Now (19) gives z1 = 0. Returning to the expression of θ′ in (4), we have

that θ′(s) → a/2b 6= 0 as s → ∞. This yields a contradiction and the second

option is impossible.

3. Case z2
0 > −b. We show that z′ vanishes at some point. On the contrary,

the solution α is defined for any s with θ′(s) → 0 as s → ∞. If ε > 0 is the

number such that z2
0 = −b + ε, we have from (19) that

z(s) =
1

2

(

a cos θ(s) +
√

(a2 + 4b) cos2 θ(s) + 4z2
0

)

→ 1

2

(

−a +
√

a2 + ε
)

:= z1 > 0.

But (4) implies then that θ′(s) → −(a + 2z1)/(az1 − b) 6= 0 again. This

contradiction means that there exists s1 > 0 such that z′(s1) = 0, and so,

θ(s1) = −π. As a consequence, the solution α presents a horizontal tangent

line at the point s = s1 whose velocity vector is α′(s1) = (−1, 0, 0), such as

it happens with the solutions given in Theorem 6.4: this point corresponds

with the minimum of the z-function. The uniqueness of solutions of a system

of differential equations implies that our solution must be one of the obtained

there.

-4 -3 -2 -1

0.5

1

1.5

2

2.5

Figure 5. Three profile curves corresponding to rotational hy-

perbolic LW-surfaces whose starting angle is θ(0) = −π/2. We

assume that a = −b = 2 in (1). Each one of the curves corre-

sponds with the initial condition z0 = 1, z0 =
√

2 and z0 = 2.

They comprise all cases described in Theorem 7.1.
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